intbanner-bg

Qwen2.5 are a series of decoder-only language models developed by Qwen team, Alibaba Cloud, available in 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B sizes, and base and instruct variants.

Serverless API

Qwen2.5 72B Instruct is available via Cyfuture AI' serverless API, where you pay per token. There are several ways to call the Cyfuture AI API, including Cyfuture AI' Python client, the REST API, or OpenAI's Python client.

See below for easy generation of calls and a description of the raw REST API for making API requests. See the Querying text models docs for details.

API Usage

Generate a model response using the chat endpoint of qwen2p5-72b-instruct. API reference

import requests
import json

url = "https://api.cyfuture.ai/aiapi/inferencing/response"
payload = {
  "model": "Model Name",
  "max_tokens": 16384,
  "top_p": 1,
  "top_k": 40,
  "presence_penalty": 0,
  "frequency_penalty": 0,
  "temperature": 0.6,
  "messages": [
    {
      "role": "user",
      "content": "Hello, how are you?"
    }
  ]
}
headers = {
  "Accept": "application/json",
  "Content-Type": "application/json",
  "Authorization": "Bearer <API_KEY>"
}
requests.request("POST", url, headers=headers, data=json.dumps(payload))
await fetch("https://api.cyfuture.ai/aiapi/inferencing/response", {
  method: "POST",
  headers: {
    "Accept": "application/json",
    "Content-Type": "application/json",
    "Authorization": "Bearer <API_KEY>"
  },
  body: JSON.stringify({
    model: ""Model Name"",
    max_tokens: 16384,
    top_p: 1,
    top_k: 40,
    presence_penalty: 0,
    frequency_penalty: 0,
    temperature: 0.6,
    messages: [
        {
            role: "user",
            content: "Hello, how are you?"
        }
    ]
  })
});
URI uri = URI.create("https://api.cyfuture.ai/aiapi/inferencing/response");
HttpClient client = HttpClient.newHttpClient();
HttpRequest request = HttpRequest.newBuilder()
  .uri(uri)
  .header("Accept", "application/json")
  .header("Content-Type", "application/json")
  .header("Authorization", "Bearer <API_KEY>")
  .POST(HttpRequest.BodyPublishers.ofString("""{
    "model": ""Model Name"",
    "max_tokens": 16384,
    "top_p": 1,
    "top_k": 40,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "temperature": 0.6,
    "messages": [
        {
            "role": "user",
            "content": "Hello, how are you?"
        }
    ]
  }"""))
  .build();
HttpResponse<String> response = client.send(request, HttpResponse.BodyHandlers.ofString());
  
package main

import (
  "bytes"
  "net/http"
  "fmt"
)

apiUrl := "https://api.cyfuture.ai/aiapi/inferencing/response"
var jsonData = []byte(`{
 "model": "Model Name",
  "max_tokens": 16384,
  "top_p": 1,
  "top_k": 40,
  "presence_penalty": 0,
  "frequency_penalty": 0,
  "temperature": 0.6,
  "messages": [
    {
      "role": "user",
      "content": "Hello, how are you?"
    }
  ]
}`)

req, err := http.NewRequest(POST, apiUrl, bytes.NewBuffer(jsonData))
req.Header.Set("Accept", "application/json")
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer <API_KEY>")

client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
  panic(err)
}
defer resp.Body.Close()

fmt.Println("response Status:", resp.Status)
curl --request POST \
  --url https://api.cyfuture.ai/aiapi/inferencing/response \
  -H 'Accept: application/json' \
  -H 'Content-Type: application/json' \
  -H 'Authorization: Bearer <API_KEY>' \
  --data '{
   "model": "Model Name",
    "max_tokens": 16384,
    "top_p": 1,
    "top_k": 40,
    "presence_penalty": 0,
    "frequency_penalty": 0,
    "temperature": 0.6,
    "messages": [
        {
            "role": "user",
            "content": "Hello, how are you?"
        }
    ]
  }'

Fine-tuning

Qwen2.5 72B Instruct can be fine-tuned on your data to create a model with better response quality. Cyfuture AI uses low-rank adaptation (LoRA) to train a model that can be served efficiently at inference time.

See the Fine-tuning guide for details.

On-demand deployments

On-demand deployments allow you to use Qwen2.5 72B Instruct on dedicated GPUs with Cyfuture AI' high-performance serving stack with high reliability and no rate limits.

See the On-demand deployments guide for details.

Model Details

Created by
[email protected]
Created
12/30/2024
Visibility
Public
Kind
Base model
Model size
14B parameters