Meta Llama Guard 2 is an 8B parameter Llama 3-based LLM safeguard model. Similar to Llama Guard, it can be used for classifying content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated.
import requests
import json
url = "https://api.cyfuture.ai/aiapi/inferencing/response"
payload = {
"model": "Model Name",
"max_tokens": 16384,
"top_p": 1,
"top_k": 40,
"presence_penalty": 0,
"frequency_penalty": 0,
"temperature": 0.6,
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": "Bearer <API_KEY>"
}
requests.request("POST", url, headers=headers, data=json.dumps(payload))
await fetch("https://api.cyfuture.ai/aiapi/inferencing/response", {
method: "POST",
headers: {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": "Bearer <API_KEY>"
},
body: JSON.stringify({
model: ""Model Name"",
max_tokens: 16384,
top_p: 1,
top_k: 40,
presence_penalty: 0,
frequency_penalty: 0,
temperature: 0.6,
messages: [
{
role: "user",
content: "Hello, how are you?"
}
]
})
});
URI uri = URI.create("https://api.cyfuture.ai/aiapi/inferencing/response");
HttpClient client = HttpClient.newHttpClient();
HttpRequest request = HttpRequest.newBuilder()
.uri(uri)
.header("Accept", "application/json")
.header("Content-Type", "application/json")
.header("Authorization", "Bearer <API_KEY>")
.POST(HttpRequest.BodyPublishers.ofString("""{
"model": ""Model Name"",
"max_tokens": 16384,
"top_p": 1,
"top_k": 40,
"presence_penalty": 0,
"frequency_penalty": 0,
"temperature": 0.6,
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}"""))
.build();
HttpResponse<String> response = client.send(request, HttpResponse.BodyHandlers.ofString());
package main
import (
"bytes"
"net/http"
"fmt"
)
apiUrl := "https://api.cyfuture.ai/aiapi/inferencing/response"
var jsonData = []byte(`{
"model": "Model Name",
"max_tokens": 16384,
"top_p": 1,
"top_k": 40,
"presence_penalty": 0,
"frequency_penalty": 0,
"temperature": 0.6,
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}`)
req, err := http.NewRequest(POST, apiUrl, bytes.NewBuffer(jsonData))
req.Header.Set("Accept", "application/json")
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer <API_KEY>")
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
panic(err)
}
defer resp.Body.Close()
fmt.Println("response Status:", resp.Status)
curl --request POST \
--url https://api.cyfuture.ai/aiapi/inferencing/response \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer <API_KEY>' \
--data '{
"model": "Model Name",
"max_tokens": 16384,
"top_p": 1,
"top_k": 40,
"presence_penalty": 0,
"frequency_penalty": 0,
"temperature": 0.6,
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}'
Llama Guard v2 8B can be fine-tuned on your data to create a model with better response quality. Cyfuture AI uses low-rank adaptation (LoRA) to train a model that can be served efficiently at inference time.
See the Fine-tuning guide for details.
On-demand deployments allow you to use Llama Guard v2 8B on dedicated GPUs with Cyfuture AI' high-performance serving stack with high reliability and no rate limits.
See the On-demand deployments guide for details.